Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58.584
1.
Folia Med (Plovdiv) ; 66(2): 196-202, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38690814

INTRODUCTION: Osteosarcoma (OS) and Ewing sarcoma (ES) represent the pediatric population's most common malignant bone tumors. 18-Fluorodeoxyglucose positron emission tomography has been shown to be effective in both the diagnostic and staging phases of cancer treatment. In recent years, some studies have also explored the possibility that FDG-PET could have a prognostic role.


Bone Neoplasms , Fluorodeoxyglucose F18 , Osteosarcoma , Positron-Emission Tomography , Radiopharmaceuticals , Sarcoma, Ewing , Humans , Sarcoma, Ewing/diagnostic imaging , Sarcoma, Ewing/pathology , Sarcoma, Ewing/drug therapy , Osteosarcoma/diagnostic imaging , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Necrosis , Prognosis
2.
Neurol India ; 72(2): 278-284, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38691470

PURPOSE: Refractory and/or recurrent meningiomas have poor outcomes, and the treatment options are limited. Peptide receptor radionuclide therapy (PRRT) has been used in this setting with promising results. We have documented our experience of using intravenous (IV) and intra-arterial (IA) approaches of Lu-177 DOTATATE PRRT. METHODS: Eight patients with relapsed/refractory high-grade meningioma received PRRT with Lu-177 DOTATATE by IV and an IA route. At least 2 cycles were administered. Time to progression was calculated from the first PRRT session to progression. The response was assessed on MRI using RANO criteria, and visual analysis of uptake was done on Ga-68 DOTANOC PET/CT. Post-therapy dosimetry calculations for estimating the absorbed dose were performed. RESULTS: Median time to progression was 8.9 months. One patient showed disease progression, whereas seven patients showed stable disease at 4 weeks following 2 cycles of PRRT. Dosimetric analysis showed higher dose and retention time by IA approach. No significant peri-procedural or PRRT associated toxicity was seen. CONCLUSION: PRRT is a safe and effective therapeutic option for relapsed/refractory meningioma. The IA approach yields better dose delivery and should be routinely practised.


Meningeal Neoplasms , Meningioma , Octreotide , Octreotide/analogs & derivatives , Humans , Meningioma/radiotherapy , Meningioma/diagnostic imaging , Meningeal Neoplasms/radiotherapy , Meningeal Neoplasms/diagnostic imaging , Female , Male , Octreotide/therapeutic use , Octreotide/administration & dosage , Middle Aged , Adult , Organometallic Compounds/therapeutic use , Aged , Treatment Outcome , Radiopharmaceuticals/therapeutic use , Receptors, Peptide , Tertiary Care Centers , Disease Progression
3.
Sci Rep ; 14(1): 10787, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734765

Radioligand therapy with [177Lu]Lu-PSMA-617 can be used to prolong life and reduce tumor burden in terminally ill castration resistant prostate cancer patients. Still, accumulation in healthy tissue limits the activity that can be administered. Therefore, fractionated therapy is used to lower toxicity. However, there might be a need to reduce toxicity even further with e.g. radioprotectors. The aim of this study was to (i). establish a preclinical mouse model with fractionated high activity therapy of three consecutive doses of 200 MBq [177Lu]Lu-PSMA-617 in which we aimed to (ii). achieve measurable hematotoxicity and nephrotoxicity and to (iii). analyze the potential protective effect of co-injecting recombinant α1-microglobulin (rA1M), a human antioxidant previously shown to have radioprotective effects. In both groups, three cycles resulted in increased albuminuria for each cycle, with large individual variation. Another marker of kidney injury, serum blood urea nitrogen (BUN), was only significantly increased compared to control animals after the third cycle. The number of white and red blood cells decreased significantly and did not reach the levels of control animals during the experiment. rA1M did reduce absorbed dose to kidney but did not show significant protection here, but future studies are warranted due to the recent clinical studies showing a significant renoprotective effect in patients.


Alpha-Globulins , Dipeptides , Heterocyclic Compounds, 1-Ring , Lutetium , Animals , Alpha-Globulins/metabolism , Mice , Male , Humans , Dipeptides/pharmacology , Kidney/pathology , Kidney/radiation effects , Kidney/drug effects , Kidney/metabolism , Radiopharmaceuticals , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/pathology , Blood Urea Nitrogen , Prostate-Specific Antigen
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732077

The skeletal muscles account for approximately 40% of the body weight and are crucial in movement, nutrient absorption, and energy metabolism. Muscle loss and decline in function cause a decrease in the quality of life of patients and the elderly, leading to complications that require early diagnosis. Positron emission tomography/computed tomography (PET/CT) offers non-invasive, high-resolution visualization of tissues. It has emerged as a promising alternative to invasive diagnostic methods and is attracting attention as a tool for assessing muscle function and imaging muscle diseases. Effective imaging of muscle function and pathology relies on appropriate radiopharmaceuticals that target key aspects of muscle metabolism, such as glucose uptake, adenosine triphosphate (ATP) production, and the oxidation of fat and carbohydrates. In this review, we describe how [18F]fluoro-2-deoxy-D-glucose ([18F]FDG), [18F]fluorocholine ([18F]FCH), [11C]acetate, and [15O]water ([15O]H2O) are suitable radiopharmaceuticals for diagnostic imaging of skeletal muscles.


Muscle, Skeletal , Radiopharmaceuticals , Humans , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/metabolism , Positron-Emission Tomography/methods , Fluorodeoxyglucose F18 , Animals , Positron Emission Tomography Computed Tomography/methods
5.
Int J Mol Sci ; 25(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38732162

The synucleinopathies are a diverse group of neurodegenerative disorders characterized by the accumulation of aggregated alpha-synuclein (aSyn) in vulnerable populations of brain cells. Oxidative stress is both a cause and a consequence of aSyn aggregation in the synucleinopathies; however, noninvasive methods for detecting oxidative stress in living animals have proven elusive. In this study, we used the reactive oxygen species (ROS)-sensitive positron emission tomography (PET) radiotracer [18F]ROStrace to detect increases in oxidative stress in the widely-used A53T mouse model of synucleinopathy. A53T-specific elevations in [18F]ROStrace signal emerged at a relatively early age (6-8 months) and became more widespread within the brain over time, a pattern which paralleled the progressive development of aSyn pathology and oxidative damage in A53T brain tissue. Systemic administration of lipopolysaccharide (LPS) also caused rapid and long-lasting elevations in [18F]ROStrace signal in A53T mice, suggesting that chronic, aSyn-associated oxidative stress may render these animals more vulnerable to further inflammatory insult. Collectively, these results provide novel evidence that oxidative stress is an early and chronic process during the development of synucleinopathy and suggest that PET imaging with [18F]ROStrace holds promise as a means of detecting aSyn-associated oxidative stress noninvasively.


Brain , Disease Models, Animal , Oxidative Stress , Positron-Emission Tomography , Synucleinopathies , alpha-Synuclein , Animals , Synucleinopathies/diagnostic imaging , Synucleinopathies/metabolism , Synucleinopathies/pathology , Positron-Emission Tomography/methods , Mice , alpha-Synuclein/metabolism , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Fluorine Radioisotopes , Male , Mice, Transgenic , Radiopharmaceuticals , Reactive Oxygen Species/metabolism
6.
Clin Respir J ; 18(5): e13751, 2024 May.
Article En | MEDLINE | ID: mdl-38725315

BACKGROUND: Some solitary pulmonary nodules (SPNs) as early manifestations of lung cancer, it is difficult to determine its nature, which brings great trouble to clinical diagnosis and treatment. Radiomics can deeply explore the essence of images and provide clinical decision support for clinicians. The purpose of our study was to explore the effect of positron emission tomography (PET) with 2-deoxy-2-[fluorine-18] fluoro-d-glucose integrated with computed tomography (CT; 18F-FDG-PET/CT) combined with radiomics for predicting probability of malignancy of SPNs. METHODS: We retrospectively enrolled 190 patients with SPNs confirmed by pathology from January 2013 to December 2019 in our hospital. SPNs were benign in 69 patients and malignant in 121 patients. Patients were randomly divided into a training or testing group at a ratio of 7:3. Three-dimensional regions of interest (ROIs) were manually outlined on PET and CT images, and radiomics features were extracted. Synthetic minority oversampling technique (SMOTE) method was used to balance benign and malignant samples to a ratio of 1:1. In the training group, least absolute shrinkage and selection operator (LASSO) regression analyses and Spearman correlation analyses were used to select the strongest radiomics features. Three models including PET model, CT model, and joint model were constructed using multivariate logistic regression analysis. Receiver operating characteristic (ROC) curves, calibration curves, and decision curves were plotted to evaluate diagnostic efficiency, calibration degree, and clinical usefulness of all models in training and testing groups. RESULTS: The estimative effectiveness of the joint model was superior to the CT or PET model alone in the training and testing groups. For the joint model, CT model, and PET model, area under the ROC curve was 0.929, 0.819, 0.833 in the training group, and 0.844, 0.759, 0.748 in the testing group, respectively. Calibration and decision curves showed good fit and clinical usefulness for the joint model in both training and testing groups. CONCLUSION: Radiomics models constructed by combining PET and CT radiomics features are valuable for distinguishing benign and malignant SPNs. The combined effect is superior to qualitative diagnoses with CT or PET radiomics models alone.


Fluorodeoxyglucose F18 , Lung Neoplasms , Positron Emission Tomography Computed Tomography , Solitary Pulmonary Nodule , Humans , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Male , Female , Positron Emission Tomography Computed Tomography/methods , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Middle Aged , Aged , Radiopharmaceuticals , Adult , Radiomics
7.
BMC Pulm Med ; 24(1): 227, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730287

OBJECTIVES: 18F-fluorodeoxyglucose (FDG) PET/CT has been widely used for the differential diagnosis of cancer. Semi-quantitative standardized uptake value (SUV) is known to be affected by multiple factors and may make it difficult to differentiate between benign and malignant lesions. It is crucial to find reliable quantitative metabolic parameters to further support the diagnosis. This study aims to evaluate the value of the quantitative metabolic parameters derived from dynamic FDG PET/CT in the differential diagnosis of lung cancer and predicting epidermal growth factor receptor (EGFR) mutation status. METHODS: We included 147 patients with lung lesions to perform FDG PET/CT dynamic plus static imaging with informed consent. Based on the results of the postoperative pathology, the patients were divided into benign/malignant groups, adenocarcinoma (AC)/squamous carcinoma (SCC) groups, and EGFR-positive (EGFR+)/EGFR-negative (EGFR-) groups. Quantitative parameters including K1, k2, k3, and Ki of each lesion were obtained by applying the irreversible two-tissue compartmental modeling using an in-house Matlab software. The SUV analysis was performed based on conventional static scan data. Differences in each metabolic parameter among the group were analyzed. Wilcoxon rank-sum test, independent-samples T-test, and receiver-operating characteristic (ROC) analysis were performed to compare the diagnostic effects among the differentiated groups. P < 0.05 were considered statistically significant for all statistical tests. RESULTS: In the malignant group (N = 124), the SUVmax, k2, k3, and Ki were higher than the benign group (N = 23), and all had-better performance in the differential diagnosis (P < 0.05, respectively). In the AC group (N = 88), the SUVmax, k3, and Ki were lower than in the SCC group, and such differences were statistically significant (P < 0.05, respectively). For ROC analysis, Ki with cut-off value of 0.0250 ml/g/min has better diagnostic specificity than SUVmax (AUC = 0.999 vs. 0.70). In AC group, 48 patients further underwent EGFR testing. In the EGFR (+) group (N = 31), the average Ki (0.0279 ± 0.0153 ml/g/min) was lower than EGFR (-) group (N = 17, 0.0405 ± 0.0199 ml/g/min), and the difference was significant (P < 0.05). However, SUVmax and k3 did not show such a difference between EGFR (+) and EGFR (-) groups (P>0.05, respectively). For ROC analysis, the Ki had a cut-off value of 0.0350 ml/g/min when predicting EGFR status, with a sensitivity of 0.710, a specificity of 0.588, and an AUC of 0.674 [0.523-0.802]. CONCLUSION: Although both techniques were specific, Ki had a greater specificity than SUVmax when the cut-off value was set at 0.0250 ml/g/min for the differential diagnosis of lung cancer. At a cut-off value of 0.0350 ml/g/min, there was a 0.710 sensitivity for EGFR status prediction. If EGFR testing is not available for a patient, dynamic imaging could be a valuable non-invasive screening method.


ErbB Receptors , Fluorodeoxyglucose F18 , Lung Neoplasms , Mutation , Positron Emission Tomography Computed Tomography , Humans , Lung Neoplasms/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , ErbB Receptors/genetics , Male , Diagnosis, Differential , Female , Middle Aged , Aged , Adult , Radiopharmaceuticals , ROC Curve , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/diagnostic imaging , Aged, 80 and over , Adenocarcinoma/genetics , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Retrospective Studies
8.
J Nucl Med ; 65(Suppl 1): 29S-37S, 2024 May 06.
Article En | MEDLINE | ID: mdl-38719237

Nuclear medicine in China started in 1956 and, with the rapid development of the economy and continuous breakthroughs in precision medicine, has made significant progress in recent years. Almost 13,000 staff members in nearly 1,200 hospitals serve more than 3.9 million patients each year. Over the past decade, the radiopharmaceutical industry has developed rapidly, with the initial formation of a complete industrial chain of production of various radiopharmaceuticals for both clinical use and basic research. Advanced equipment such as PET/CT scanners is being manufactured domestically and even installed abroad. Recently, research into screening and synthesizing new target probes and their translation into the clinic has gained more attention, with various new tracers with potential clinical value being thoroughly studied. Simultaneously, 68Ga- and 177Lu-labeled tumor-targeted probes and others have been implemented for theranostics in an increasing number of hospitals and would be helped by approval from the National Medical Products Administration. Over the next 10-20 y, with the launch of the Mid- and Long-Term Development Plan for Medical Isotopes (2021-2035) by the Chinese government, there is great potential for nuclear medicine in China. With the rise in independent innovation in manufacturing, the shortage of radiopharmaceuticals will be effectively curtailed. We anticipate that the scale of nuclear medicine will at least double by 2035, covering all high-grade hospitals and leading to the aim of "one county, one department" in China.


Nuclear Medicine , China , Humans , Radiopharmaceuticals , Precision Medicine
9.
J Nucl Med ; 65(Suppl 1): 72S-76S, 2024 May 06.
Article En | MEDLINE | ID: mdl-38719236

Since the late 1950s, radiopharmaceuticals have been used for diagnosis and treatment in clinical nuclear medicine in China. Over the decades, China has successfully established a relatively sophisticated system for radiopharmaceutical production and management, supported by state-of-the-art facilities. With the rapid growth of the national economy, the radiopharmaceutical market in China is expanding at a remarkable pace. This burgeoning market has led to an escalating demand for clinical-stage radiopharmaceuticals, either produced domestically or imported. Despite this positive trajectory, the development and application of radiopharmaceuticals in China have been hindered by several challenges that persist, such as inadequate research, insufficient investment, limited availability of radionuclides, shortage of trained personnel in related fields, and imperfections in policies and regulations. In an exciting development, the regulation reforms implemented since 2015 have positively affected China's drug regulatory system. The introduction of the "Mid- and Long-Term Development Plan (2021-2035) for Medical Isotopes" created concurrently an opportune environment for the advancement of innovative radiopharmaceuticals. In this review, we aim to provide an overview of the approval process for novel radiopharmaceuticals by the National Medical Products Administration and the status of radiopharmaceuticals in research and development in China. Preclinical development and clinical translation of radiopharmaceuticals are undergoing rapid evolution in China. As practitioners in the field in China, we provide several practical suggestions to stimulate open discussions and thoughtful consideration.


Drug Approval , Radiopharmaceuticals , Radiopharmaceuticals/therapeutic use , China , Humans
10.
J Nucl Med ; 65(Suppl 1): 46S-53S, 2024 May 06.
Article En | MEDLINE | ID: mdl-38719239

Total-body PET, an emerging technique, enables high-quality simultaneous total-body dynamic PET acquisition and accurate kinetic analysis. It has the potential to facilitate the study of multiple tracers while minimizing radiation dose and improving tracer-specific imaging. This advancement holds promise for enhancing the development and clinical evaluation of drugs, particularly radiopharmaceuticals. Multiple clinical trials are using a total-body PET scanner to explore existing and innovative radiopharmaceuticals. However, challenges persist, along with the opportunities, with regard to the use of total-body PET in drug development and evaluation. Specifically, considerations relate to the role of total-body PET in clinical pharmacologic evaluations and its integration into the theranostic paradigm. In this review, state-of-the-art total-body PET and its potential roles in pharmaceutical research are explored.


Drug Development , Positron-Emission Tomography , Whole Body Imaging , Humans , Positron-Emission Tomography/methods , Radiopharmaceuticals , Animals
11.
J Nucl Med ; 65(Suppl 1): 19S-28S, 2024 May 06.
Article En | MEDLINE | ID: mdl-38719238

Melanin is one of the representative biomarkers of malignant melanoma and a potential target for diagnosis and therapy. With advancements in chemistry and radiolabeling technologies, promising strides have been made to synthesize radiolabeled melanin-binding molecules for various applications. We present an overview of melanin-targeted radiolabeled molecules and compare their features reported in preclinical studies. Clinical practice and trials are also discussed to elaborate on the safety and validity of the probes, and expanded applications beyond melanoma are reviewed. Melanin-targeted imaging holds potential value in the diagnosis, staging, and prognostic assessment of melanoma and other applications. Melanin-targeted radionuclide therapy possesses immense potential but requires more clinical validation. Furthermore, an intriguing avenue for future research involves expanding the application scope of melanin-targeted probes and exploring their value.


Melanins , Translational Research, Biomedical , Humans , Melanins/metabolism , Animals , Radioactive Tracers , Melanoma/diagnostic imaging , Melanoma/metabolism , Radiopharmaceuticals
12.
J Nucl Med ; 65(Suppl 1): 38S-45S, 2024 May 06.
Article En | MEDLINE | ID: mdl-38719241

Radiopharmaceuticals play a critical role in nuclear medicine, providing novel tools for specifically delivering radioisotopes for the diagnosis and treatment of cancers. As the starting point for developing radiopharmaceuticals, cancer-specific biomarkers are important and receive worldwide attention. This field in China is currently experiencing a rapid expansion, with multiple radiotracers targeting novel targets being developed and translated into clinical studies. This review provides a brief overview of the exploration of novel imaging targets, preclinical evaluation of their targeting ligands, and translational research in China from 2020 to 2023, for detecting cancer, guiding targeted therapy, and visualizing the immune microenvironment. We believe that China will play an even more important role in the development of nuclear medicine in the world in the future.


Biomarkers, Tumor , Neoplasms , Radioactive Tracers , Humans , China , Biomarkers, Tumor/metabolism , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radiopharmaceuticals , Animals
13.
Cancer Imaging ; 24(1): 58, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715096

BACKGROUND: In the present study, we investigated the value of 18F-fibroblast-activation protein inhibitor (FAPI) positron emission tomography/computed tomography (18F-FAPI-42 PET/CT) to preoperative evaluations of appendiceal neoplasms and management for patients. METHODS: This single-center retrospective clinical study, including 16 untreated and 6 treated patients, was performed from January 2022 to May 2023 at Southern Medical University Nanfang Hospital. Histopathologic examination and imaging follow-up served as the reference standard. 18F-FAPI-42 PET/CT was compared to 18F-fluorodeoxyglucose (18F-FDG) PET/CT and contrast-enhanced CT (CE-CT) in terms of maximal standardized uptake value (SUVmax), diagnostic efficacy and impact on treatment decisions. RESULTS: The accurate detection of primary tumors and peritoneal metastases were improved from 28.6% (4/14) and 50% (8/16) for CE-CT, and 43.8% (7/16) and 85.0% (17/20) for 18F-FDG PET/CT, to 87.5% (14/16) and 100% (20/20) for 18F-FAPI-42 PET/CT. Compared to 18F-FDG PET/CT, 18F-FAPI-42 PET/CT detected more regions infiltrated by peritoneal metastases (108 vs. 43), thus produced a higher peritoneal cancer index (PCI) score (median PCI: 12 vs. 5, P < 0.01). 18F-FAPI-42 PET/CT changed the intended treatment plans in 35.7% (5/14) of patients compared to CE-CT and 25% (4/16) of patients compared to 18F-FDG PET/CT but did not improve the management of patients with recurrent tumors. CONCLUSIONS: The present study revealed that 18F-FAPI-42 PET/CT can supplement CE-CT and 18F-FDG PET/CT to provide a more accurate detection of appendiceal neoplasms and improved treatment decision making for patients.


Appendiceal Neoplasms , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Humans , Positron Emission Tomography Computed Tomography/methods , Female , Male , Retrospective Studies , Middle Aged , Appendiceal Neoplasms/diagnostic imaging , Appendiceal Neoplasms/pathology , Appendiceal Neoplasms/therapy , Aged , Adult , Peritoneal Neoplasms/diagnostic imaging , Peritoneal Neoplasms/therapy , Peritoneal Neoplasms/secondary , Tomography, X-Ray Computed/methods
14.
J Inorg Biochem ; 256: 112569, 2024 Jul.
Article En | MEDLINE | ID: mdl-38701687

The clinical success of [223Ra]RaCl2 (Xofigo®) for the palliative treatment of bone metastases in patients with prostate cancer has highlighted the therapeutic potential of α-particle emission. Expanding the applicability of radium-223 in Targeted Alpha Therapy of non-osseous tumors is followed up with significant interest, as it holds the potential to unveil novel treatment options in the comprehensive management of cancer. Moreover, the use of barium radionuclides, like barium-131 and -135m, is still unfamiliar in nuclear medicine applications, although they can be considered as radium-223 surrogates for imaging purposes. Enabling these applications requires the establishment of chelators able to form stable complexes with radium and barium radionuclides. Until now, only a limited number of ligands have been suggested and these molecules have been primarily inspired by existing structures known for their ability to complex large metal cations. However, a systematic inspection of chelators specifically tailored to Ra2+ and Ba2+ has yet to be conducted. This work delves into a comprehensive investigation of a series of small organic ligands, aiming to unveil the coordination preferences of both radium-223 and barium-131/135m. Electronic binding energies of both metal cations to each ligand were theoretically computed via Density Functional Theory calculations (COSMO-ZORA-PBE-D3/TZ2P), while thermodynamic stability constants were experimentally determined for Ba2+-ligand complexes by potentiometry, NMR and UV-Vis spectroscopies. The outcomes revealed malonate, 2-hydroxypyridine 1-oxide and picolinate as the most favorable building blocks to design multidentate chelators. These findings serve as foundation guidelines, propelling the development of cutting-edge radium-223- and barium-131/135m-based radiopharmaceuticals for Targeted Alpha Therapy and theranostics of cancer.


Radium , Radium/chemistry , Radium/therapeutic use , Humans , Radioisotopes/chemistry , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use , Barium/chemistry , Alpha Particles/therapeutic use , Chelating Agents/chemistry , Chelating Agents/therapeutic use , Neoplasms/drug therapy , Theranostic Nanomedicine/methods , Metals, Alkaline Earth/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/therapeutic use
15.
Medicine (Baltimore) ; 103(18): e38107, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701245

RATIONALE: Primary hyperparathyroidism, though relatively prevalent among endocrine disorders, affecting 1% of the general population, often presents diagnostic challenges. Given its potential to precipitate severe complications including nephrolithiasis and fractures, timely diagnosis, and effective management are crucial. PATIENT CONCERNS: A 38-year-old woman with hypercalcemia was referred to the Department of Nuclear Medicine for a Tc-99m MIBI scan. DIAGNOSES: Tc-99m MIBI scan showed focal increased uptake in the left thyroid gland area, initially suggesting a parathyroid adenoma. Further examination using SPECT/CT revealed a nodular lesion within the left thyroid gland showing high Tc-99m MIBI uptake. INTERVENTIONS: Left thyroid lumpectomy confirmed the lesion as follicular thyroid carcinoma. On the second Tc-99m MIBI scan conducted after total thyroidectomy, a parathyroid adenoma was eventually detected in the right lower area, enabling the subsequent appropriate treatment, a right lower parathyroidectomy. OUTCOMES: Thirteen days after the parathyroidectomy, serum levels of total calcium and parathyroid hormone returned to normal. Furthermore, bone mineral density evaluated using DEXA remained within the expected range for her age even after 14 months. LESSONS: When interpreting the Tc-99m MIBI scan, it is essential to keep in mind that various tumors rich in mitochondria, such as thyroid carcinoma, could show a high uptake of Tc-99m MIBI.


Adenocarcinoma, Follicular , Incidental Findings , Parathyroid Neoplasms , Technetium Tc 99m Sestamibi , Humans , Female , Adult , Parathyroid Neoplasms/diagnostic imaging , Parathyroid Neoplasms/surgery , Parathyroid Neoplasms/diagnosis , Adenocarcinoma, Follicular/diagnostic imaging , Adenocarcinoma, Follicular/diagnosis , Adenocarcinoma, Follicular/surgery , Diagnosis, Differential , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/diagnosis , Radiopharmaceuticals , Adenoma/diagnostic imaging , Adenoma/diagnosis , Adenoma/surgery , Single Photon Emission Computed Tomography Computed Tomography/methods
16.
Medicine (Baltimore) ; 103(18): e37789, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701250

Purpose of our research is to demonstrate efficacy of narrow interval dual phase [18F]-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging in distinguishing tumor recurrence (TR) from radiation necrosis (RN) in patients treated for brain metastases. 35 consecutive patients (22 female, 13 male) with various cancer subtypes, lesion size > 1.0 cm3, and suspected recurrence on brain magnetic resonance imaging (MRI) underwent narrow interval dual phase FDG-PET/CT (30 and 90 min after tracer injection). Clinical outcome was determined via sequential MRIs or pathology reports. Maximum standard uptake value (SUVmax) of lesion (L), gray matter (GM), and white matter (WM) was measured on early (1) and delayed (2) imaging. Analyzed variables include % change, late phase, and early phase for L uptake, L/GM uptake, and L/WM uptake. Statistical analysis (P < .01), receiver operator characteristic (ROC) curve and area under curve (AUC) cutoff values were obtained. Change in L/GM ratio of > -2% was 95% sensitive, 91% specific, and 93% accurate (P < .001, AUC = 0.99) in distinguishing TR from RN. Change in SUVmax of lesion alone was the second-best indicator (P < .001, AUC = 0.94) with an ROC cutoff > 30.5% yielding 86% sensitivity, 83% specificity, and 84% accuracy. Other variables (L alone or L/GM ratios in early or late phase, all L/WM ratios) were significantly less accurate. Utilizing narrow interval dual phase FDG-PET/CT in patients with brain metastasis treated with radiation therapy provides a practical approach to distinguish TR from RN. Narrow time interval allows for better patient comfort, greater efficiency of PET/CT scanner, and lower disruption of workflow.


Brain Neoplasms , Fluorodeoxyglucose F18 , Neoplasm Recurrence, Local , Positron Emission Tomography Computed Tomography , Radiation Injuries , Radiopharmaceuticals , Humans , Positron Emission Tomography Computed Tomography/methods , Female , Male , Brain Neoplasms/secondary , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Middle Aged , Radiation Injuries/diagnostic imaging , Radiation Injuries/etiology , Radiation Injuries/pathology , Neoplasm Recurrence, Local/diagnostic imaging , Aged , Adult , Diagnosis, Differential , Necrosis/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , ROC Curve
17.
Medicine (Baltimore) ; 103(18): e37997, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701272

Very few studies worldwide have assessed the estimated glomerular filtration rate (eGFR) using serum cystatin C (ScysC) in comparison to the gold standard measured glomerular filtration rate (mGFR) with a gamma camera technique using 99m-Technetium-Diethylene Triaminepentoacetic Acid (99mTc-DTPA). To determine the eGFR formula with the most accurate estimate of glomerular filtration rate when compared with mGFR in a healthy population in Vietnam. We conducted a cross-sectional descriptive study of more than 100 adults without hypertension. The study subjects were examined for general characteristics and blood biochemistry tests to assess eGFR, and the glomerular filtration rate was measured using 99mTc-DTPA with the Gates technique to record mGFR. The estimated values of the eGFR formula were evaluated and compared with the actual mGFR using 99mTechnetium-DTPA. Serum creatinine (Scr) concentration showed a significant difference between males and females: 0.9 ±â€…0.1 versus 0.8 ±â€…0.1 (P < .001), while ScysC concentration did not show this difference. The mGFR in the age groups < 40, 40 to 59, and ≥ 60: 105.0 ±â€…9.9, 94.8 ±â€…8.6, and 93.4 ±â€…10.6, respectively (P < .001). The eGFR-CKD-EPI-cystatin C 2012 formula showed the highest positive correlation with mGFR (ΔGFR = -1.6, R = 0.68, P < .001). eGFR calculated using cystatin C does not require sex adjustment, whereas, for creatinine, sex adjustment is necessary. The eGFR-CKD-Epi-CysC formula showed the lowest difference and a strong correlation with mGFR.


Creatinine , Cystatin C , Glomerular Filtration Rate , Humans , Cystatin C/blood , Female , Male , Creatinine/blood , Middle Aged , Adult , Cross-Sectional Studies , Vietnam , Technetium Tc 99m Pentetate , Aged , Biomarkers/blood , Radiopharmaceuticals , Southeast Asian People
18.
Cancer Imaging ; 24(1): 56, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702821

BACKGROUND: This study aimed to compare the diagnostic value of [68 Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT imaging for primary lesions and metastatic lymph nodes in patients with tonsil cancer. METHOD: Twenty-one tonsil cancer patients who underwent [68 Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT scans within two weeks in our centre were retrospectively enrolled. The maximum standardized uptake value (SUVmax) and tumor-to-background ratio (TBR) of the two tracers were compared by using the Mann‒Whitney U test. In addition, the sensitivity, specificity, and accuracy of the two methods for diagnosing metastatic lymph nodes were analysed. RESULTS: In detecting primary lesions, the efficiency was higher for [68 Ga]Ga-DOTA-FAPI-04 PET/CT (20/22) than for [18F]FDG PET/CT (9/22). Although [68 Ga]Ga-DOTA-FAPI-04 uptake (SUVmax, 5.03 ± 4.06) was lower than [18F]FDG uptake (SUVmax, 7.90 ± 4.84, P = 0.006), [68 Ga]Ga-DOTA-FAPI-04 improved the distinction between the primary tumor and contralateral normal tonsillar tissue. The TBR was significantly higher for [68 Ga]Ga-DOTA-FAPI-04 PET/CT (3.19 ± 2.06) than for [18F]FDG PET/CT (1.89 ± 1.80) (p < 0.001). In lymph node analysis, SUVmax and TBR were not significantly different between [68 Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT (7.67 ± 5.88 vs. 8.36 ± 6.15, P = 0.498 and 5.56 ± 4.02 vs. 4.26 ± 3.16, P = 0.123, respectively). The specificity and accuracy of [68 Ga]Ga-DOTA-FAPI-04 PET/CT were higher than those of [18F]FDG PET/CT in diagnosing metastatic cervical lymph nodes (all P < 0.05). CONCLUSION: The availability of [68 Ga]Ga-DOTA-FAPI-04 complements the diagnostic results of [18F]FDG by improving the detection rate of primary lesions and the diagnostic accuracy of cervical metastatic lymph nodes in tonsil cancer compared to [18F]FDG.


Fluorodeoxyglucose F18 , Lymphatic Metastasis , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Tonsillar Neoplasms , Humans , Positron Emission Tomography Computed Tomography/methods , Male , Female , Retrospective Studies , Lymphatic Metastasis/diagnostic imaging , Middle Aged , Aged , Tonsillar Neoplasms/diagnostic imaging , Tonsillar Neoplasms/pathology , Adult , Gallium Radioisotopes , Organometallic Compounds , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology
19.
Cancer Imaging ; 24(1): 57, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711135

BACKGROUND: PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized likelihood (BPL) reconstruction algorithm is a novel reconstruction algorithm that may improve contrast whilst preventing introduction of image noise. The aim of this study is to compare the quantitative parameters obtained using BPL and the Ordered Subset Expectation Maximization (OSEM) reconstruction algorithms. METHODS: Fifty consecutive patients with mCRPC who underwent [68Ga]Ga-PSMA-11 PET/CT using OSEM reconstruction to assess suitability for [177Lu]Lu-PSMA-617 therapy were selected. BPL algorithm was then used retrospectively to reconstruct the same PET raw data. Quantitative and volumetric measurements such as tumour standardised uptake value (SUV)max, SUVmean and Molecular Tumour Volume (MTV-PSMA) were calculated on both reconstruction methods. Results were compared (Bland-Altman, Pearson correlation coefficient) including subgroups with low and high-volume disease burdens (MTV-PSMA cut-off 40 mL). RESULTS: The SUVmax and SUVmean were higher, and MTV-PSMA was lower in the BPL reconstructed images compared to the OSEM group, with a mean difference of 8.4 (17.5%), 0.7 (8.2%) and - 21.5 mL (-3.4%), respectively. There was a strong correlation between the calculated SUVmax, SUVmean, and MTV-PSMA values in the OSEM and BPL reconstructed images (Pearson r values of 0.98, 0.99, and 1.0, respectively). No patients were reclassified from low to high volume disease or vice versa when switching from OSEM to BPL reconstruction. CONCLUSIONS: [68Ga]Ga-PSMA-11 PET/CT quantitative and volumetric parameters produced by BPL and OSEM reconstruction methods are strongly correlated. Differences are proportional and small for SUVmean, which is used as a predictive biomarker. Our study suggests that both reconstruction methods are acceptable without clinical impact on quantitative or volumetric findings. For longitudinal comparison, committing to the same reconstruction method would be preferred to ensure consistency.


Algorithms , Bayes Theorem , Gallium Isotopes , Gallium Radioisotopes , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/pathology , Aged , Middle Aged , Retrospective Studies , Oligopeptides , Edetic Acid/analogs & derivatives , Whole Body Imaging/methods , Radiopharmaceuticals , Aged, 80 and over , Neoplasm Metastasis , Image Processing, Computer-Assisted/methods , Dipeptides/therapeutic use
20.
Oncotarget ; 15: 288-300, 2024 May 07.
Article En | MEDLINE | ID: mdl-38712741

PURPOSE: Sequential PET/CT studies oncology patients can undergo during their treatment follow-up course is limited by radiation dosage. We propose an artificial intelligence (AI) tool to produce attenuation-corrected PET (AC-PET) images from non-attenuation-corrected PET (NAC-PET) images to reduce need for low-dose CT scans. METHODS: A deep learning algorithm based on 2D Pix-2-Pix generative adversarial network (GAN) architecture was developed from paired AC-PET and NAC-PET images. 18F-DCFPyL PSMA PET-CT studies from 302 prostate cancer patients, split into training, validation, and testing cohorts (n = 183, 60, 59, respectively). Models were trained with two normalization strategies: Standard Uptake Value (SUV)-based and SUV-Nyul-based. Scan-level performance was evaluated by normalized mean square error (NMSE), mean absolute error (MAE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Lesion-level analysis was performed in regions-of-interest prospectively from nuclear medicine physicians. SUV metrics were evaluated using intraclass correlation coefficient (ICC), repeatability coefficient (RC), and linear mixed-effects modeling. RESULTS: Median NMSE, MAE, SSIM, and PSNR were 13.26%, 3.59%, 0.891, and 26.82, respectively, in the independent test cohort. ICC for SUVmax and SUVmean were 0.88 and 0.89, which indicated a high correlation between original and AI-generated quantitative imaging markers. Lesion location, density (Hounsfield units), and lesion uptake were all shown to impact relative error in generated SUV metrics (all p < 0.05). CONCLUSION: The Pix-2-Pix GAN model for generating AC-PET demonstrates SUV metrics that highly correlate with original images. AI-generated PET images show clinical potential for reducing the need for CT scans for attenuation correction while preserving quantitative markers and image quality.


Deep Learning , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Humans , Positron Emission Tomography Computed Tomography/methods , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Middle Aged , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Image Processing, Computer-Assisted/methods , Algorithms , Radiopharmaceuticals , Reproducibility of Results
...